
Transactional Job Queues
and the Two Generals' Problem

Our worst outage in ten years of running Hypothesis,
and how we fixed it (with Postgres)

https://seanh.cc/ ← Currently available for software engineering work!

https://seanh.cc/

Hypothesis

How Hypothesis fetches annotations

/search?url=https://example.com/foo

How Hypothesis fetches annotations

Annotation missing from
Elasticsearch =
effectively missing from
the app.

So getting annotations
into Elasticsearch is
really important, then!

How Hypothesis used to save annotations

It worked, until it didn't.

Any guesses?

● All sorts of alarms firing

● Logs flooded with seemingly unrelated error messages: everything was failing

● CPU usage spiked and pinned to the ceiling

● General service degradation:
○ Requests across all endpoints erroring, slow, or timing out

○ But all of this only intermittently

● User sometimes seeing errors when saving annotations

● Some users reported annotations appearing to save successfully, then disappearing

RabbitMQ was down!

Two hours to restore service

21.5K annotations saved to Postgres but not to Elasticsearch

It's the Two Generals Problem!

How we fixed it (with Postgres)

How Hypothesis now saves annotations

(separation of concerns)
Direct indexing = fast
Periodic indexing = reliable

job table in Postgres

CREATE TABLE job (

 id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY (CYCLE),

 name TEXT NOT NULL, -- Example: 'index'

 enqueued_at TIMESTAMP WITHOUT TIME ZONE DEFAULT now() NOT NULL, -- For sorting

 scheduled_at TIMESTAMP WITHOUT TIME ZONE DEFAULT now() NOT NULL,

 expires_at TIMESTAMP WITHOUT TIME ZONE DEFAULT now() + interval '30 days' NOT NULL,

 priority INTEGER NOT NULL,

 tag TEXT NOT NULL, -- Example: 'storage.create_annotation'

 kwargs JSONB DEFAULT '{}'::jsonb NOT NULL -- Example: {annotation_id: 'xyz'}

);

job table in Postgres

INSERT INTO job (name, scheduled_at, priority, tag, kwargs)

VALUES (

 'index',

 now() + interval '60 seconds',

 1,

 'storage.create_annotation',

 '{"annotation_id": "xyz"}'

);

def sync_annotations(): # Gets called once a minute.

 fetch up to 2500 rows from job table # Each job contains an annotation_id (primary key).

 fetch the corresponding annotations from Postgres # Fetch by primary key (id).

 ...and from Elasticsearch # Also by id.

 for each job:

 if annotation not in Postgres: delete job

 else if annotation already in Elasticsearch: delete job

 else: write annotation to Elasticsearch # And don't delete the job.

SELECT id, kwargs

FROM job

WHERE job.name = 'index'

AND job.scheduled_at < now()

AND job.expires_at > now()

ORDER BY job.priority, job.enqueued_at

LIMIT 2500

FOR UPDATE SKIP LOCKED;

Job queue monitoring

Job queue alarms

Consumer stops Job completion rate low-watermark alarm

Producer stops Job completion rate low-watermark alarm

Consumer and producer both stop Job completion rate low-watermark alarm

Producer outpaces consumer Queue length high-watermark alarm

Stuck jobs Queue length high-watermark alarm
(eventually)
Expired job alarm
(eventually, even if just a single job sticks)

Re-indexing was now also possible
INSERT INTO job

 (name, scheduled_at, priority, ...)

SELECT

 'index',

 '2026-01-30 12:38:15.951648',

 100,

 'reindex_user',

 jsonb_build_object(

 'annotation_id', annotation.id

)

FROM annotation

WHERE annotation.userid = :userid;

Re-index all annotations:

● From a given time period
● From a given user
● From a given group
● Of a given document
● ...

This was also used when renaming or deleting
users, etc.

“Transactionally
Staged Job Drain”
brandur.org/job-drain

http://brandur.org/job-drain

